MaxiMill HFC

The High Feed Cutting System

MaxiMill HFC The High Feed Cutting System

- 1. Overview
- 2. Product
- 3. Application

1. Overview product benefits:

4 Cutting edges

Feedrates up to **f_z 3mm/t** possible

Maximum chip removal rate Max. economy

Soft cutting and reduced vibration -> max spindle protection

Compact and stable construction

Main cutting forces in **axial direction**, only little radial load

1.1 Product overview:

- Tool diameter **16** 100 mm
- Insert size **06**; 09; 12

2. Product:

2.1 Product features Tool:

2.2 Product features tool:

Mounting position:

- The cutting forces are mainly in the axial direction
- Soft cutting and reduced cutting noise

Even with long overhang lenghts there is almost no vibration

Little stress on the machine spindle

Depth of cut:

• Insert size 06; 09; 12

NEW! AMB - Stuttgart 2012:

Program extension HFC...

New insert size:

HFC-06

CHFC Ø 16; 20; 25; 32 GHFC Ø 16; 20; 25; 32

XPLX 060305SR-M50 CTP1235 XPLX 060305ER-F40 CTC5235

New chip groove:

HFC-12

XOLX 120410SR-**R50** CTP1235

Geometry -F...

- For finishing
- Very soft cutting
- instable conditions

XPLX 06..

XDLX 09..

			Machini	ng situat	tion and	Machining type	
Chip groove	Chip groove code	Material	\bigcirc	\bigcirc		۲	F/M/R
-F40	:		\checkmark	✓			F

Geometry -M...

- Universal
- First choice for all steels
- Balance between stability and soft cutting action

XDLX 09..

XOLX 12..

			Machini	ng situat	tion and	Machining type	
Chip groove	Chip groove code	Material	\bigcirc	\bigcirc	٢	۲	F/M/R
-M50				✓	\checkmark		М

XPLX 06..

Geometry -R...

- Mainly for roughing
- Robust cutting edge
- Very good stability
- For severely interrupted cut and generally difficult application conditions

8

->

10

2.3 Product highlights:

Power consumption in comparision to benchmark

Producer	Spindle power [KW]	Vc [rev/min]	doc [mm]	fz [mm]	Tool Ø
Comp. 1	2.7	200	2	1,5	50
Comp.2	3.1	200	2	1,5	52
CERATIZIT	2.3	200	2	1,5	52

3. Application overview:

- Face Milling with max. feed rate (-> 3mm per tooth)
- Ramping for the production of deep pockets
- Ilunge milling for max. chip removal

3.1 Application data:

high chip removal rate

main cutting forces in **axial direction**, only little radial load

engagement data when plunge milling							
	Z _{max}		f				
		initial	Ţ				
	[mm]						
XDLX 09	7,5	0,1	0,08	0,15	07		
XOLX 12	10	0,15	0,10	0,20	v		

Tool offset with max. overlap

Tool offset for unstable conditions

3.2 Starting parameters:

(at optimal conditions)

3.2 Starting parameters:

(at optimal conditions)

3.3 Success stories: "Case studies"

		Prot Mac Red Red Red	blems / criter hining Time ult: uction of Machir ucing the cost o ucing the cost o	ia: hing Time from 33 h f the tool 19% f the procedure 53%	ours to 15 hours
Work piece:	Die for Axle Sleeve	Cut	ting data:	CERATIZIT	Competitor
Material:	1.2367	V	[m/min]	121	36
Properties/hardness	: 45 - 48 HRC		[mm/min]	1684	360
Machine:	HSM MAKINO MCB 1210 A40	f f	[mm]	0.70	0.4
Tool:	CHFC.32.R.02-12		[mm]	0,70	0,4
Insert:	XOLT 120410SR-M50	ap	[[]]]]	0,70	0,8
Grade:	CTP 1235	a	լՠՠֈ	15	35
Competitor:	SANDVIK500.00.9200.N169-RCMT1204	4		AIR	AIR

3.3 Success stories: "Case studies"

Problems / criteria: Producing 3 x 680mm long through slots with U-drill too time consuming. Vibrations due to high cutting forces

Change to plunge milling process.

Machining time/piece reduced by 80%

Productivity increase of 400%

Cut	ting data:	CERATIZIT	Competitor		
V _c	[m/min]	180	100-120		
V _f	[mm/min]	500	60-120		
fz	[mm]	0,14	0,06-0,10		
a	[mm]				
a	[mm]	10			
The second se		Dry			

3.3 Success stories: "Case studies"

		Prok - Hig - Hig - Life - Life - Ma - Ma - Sei - Pro - Thr	blems / criteri h machining tim h machining cos time of the spine ult: chining time red chining costs red chining costs reduct oductivity increas ree times the life	a: e sts dle uced by 70% duced by 71% ed by 50% sed by 230% time of the motor- s	pindle
Workpiece:	Cylinder	Cutt	ing data:	CERATIZIT	Competitor
Material:	Steel 42 CrMo 4	V	[m/min]	180	90
Properties/hardness:	Turne mailling and a ching (mastern again dia)	V,	[mm/min]	6879	516
Machine:	I urn-milling machine (motor- spindle) CHEC 25 P 03 00 A 50 $(7 - 3)$	f	[mm]	1,0	0,15
Incort:	XOI = 120410 SR-M50	a	[mm]	1	4
Grade:	CTP1235	a	[mm]	25	25
Competitor:	End mill with APKT 1003 ($z = 3$)	H.	-	emulsion	emulsion

Customer benefits

low power consumption max. chip removal

Soft cutting and reduced vibration -> max spindle protection

Rough milling of faces -> min. cutting time with max. tool life

MaxiMill HFC The High Feed Cutting System

Innovative and flexible thinking matters!

